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Bending strength of silica glass
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Tensile and bending tests are useful to characterize the mechanical behavior of ceramics.
Theoretical comparisons between results of both tests are usually done based on Weibull
statistics. In previous experiments on borosilicate glass, no agreement was found between
experimental and theoretical values of the ratio of the maximum bending and tensile
stresses at 50 percent probability of fracture. In this investigation, additional experiments in
bending have been performed, to measure the distribution of fracture initiation points.
Good agreement with theory is found. The previous disagreement could be attributed to
fatigue effects. C© 2000 Kluwer Academic Publishers

1. Introduction
Strength of brittle materials is usually measured by
means of either bending or tensile tests. This is a highly
complex problem [1, 2]. The major difficulty with ten-
sile testing is mounting the specimen in the machine.
Fixtures used for tensile testing of ductile materials can-
not be used, because they rely on plastic deformation of
the specimen ends to assure gripping. If used on a brittle
material, they cause fracture before any significant de-
formation occurs. On the other hand, dog-bone grips or
other grips for use with button-ended specimens require
careful adjustment to attain the near perfect alignment
required to eliminate spurious bending stresses. There-
fore, in brittle materials of relatively large size, it is
easier, and more usual, to measure mechanical strength
through bending tests.

On the other hand, specimens such as optical fibers,
having small transverse dimensions (micrometers) are
highly flexible. Thus, bending stresses are unimportant
in them and tensile tests can be performed quite easily
using, for example, a capstan-drive grip system [3]. By
contrast, in these specimens, the conventional bending
test is nearly impossible to perform, because the high
flexibility demands such a small spacing between end
supports.

Two assumptions commonly made in analyses of
fracture in brittle materials are: that in the material some
distribution of flaws exists initially; and that the frac-
ture process consists of the propagation of a single crack
from that surface flaw which, in relation to its size, is
most highly stressed in tension. Compressive stresses
are usually ignored. Based on these assumptions some
sort of “weakest link” model is developed to describe
the material. Although other models have been used,
Weibull statistics [4, 5] are used most often because
they fit a great many data sets.

In the present work, measurements of fracture initi-
ation points and loads in bending are statistically ana-
lyzed to assess agreement with theoretical studies based
in Weibull statistics.

2. Theoretical background
In testing cylindrical specimens of test lengthL the
cumulative probability,P, of fracture is given by

P(σ ∗) = 1− exp

{
−L

∫
f (σ ) ds

}
(1)

Hereσ ∗ is some stress value characterizing the load
level in the test; f is a function of the local surface
stress,σ ; and the integration is performed over the spec-
imen surface. The functionf (σ ) for a two-parameter
Weibull distribution [6] is given by

f (σ ) = (σ/σ0)m

(S0L0)
(2)

where,m is a material-dependent constant referred to
as the Weibull exponent, andσ0 (stress),S0 (area), and
L0 (length) are normalization constants.

Consider a circularly cylindrical specimen of radius
R and length 2a+ L loaded in fourpoint bending by
forces of magnitudeF , as depicted in Fig. 1. Each end
span has lengtha and the center span isL. The center
span bending moment isFa and the maximum stress
is σm= 4Fa/πR3. Within the center span, the stress
anywhere on the specimen surface is independent of
axial position and can be expressed as

σ = σmy

R
= σm sinθ (3)
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Figure 1 Specimen and test geometry for four point bending.

Figure 2 Cross section of circularly cylindrical specimen with dimen-
sional notation.

Herey, the distance from the neutral axis, andθ , the an-
gle from the neutral axis, are shown in Fig. 2. Because
the stress is independent of axial position the integra-
tion in Equation 1 need only be performed over the
circumference; and, because compressive stress has no
effect, over only half of the circumference. Thus, using
Equation 2 in (1) gives

P(σm) = 1−exp

{
−
(
σm

σ0

)m( RL2

S0L0

)∫ π

0
sinm θ dθ

}
(4)

Define the function M(R, L ,m) as M = (RL2/

S0L0)
∫ π

0 sinm θ dθ which is independent of stress.M
is also independent ofθ which is merely a dummy vari-
able of integration over the prescribed range. Rearrange
Equation 4 to the form exp{−(σm

σ0
)mM}=1− P(σm)

and take the logarithm of each side. This gives

−ln{1− P(σm)} =
(
σm

σ0

)m

M (5)

Take the logarithm of each side of Equation 5. The result
can be arranged into an equation of the form

ln Y = m ln σm+ C (6)

Here,Y=−ln{1− P(σm)} is one basic parameter for
making a Weibull plot; the other is the logarithm of the
measured load or stressσm. The slope of such a plot is
the Weibull exponent,m. The final termC will depend

upon the test geometry and uponm but will not depend
upon the load (or stress).

The theoretical distribution of fracture angles, for a
random distribution of surface flaws around the circum-
ference, is called the fracture angle probability density,
which is proportional to the derivative ofP(σm) with
respect toθ . It is obtained first by differentiation of
Equation 4

dP(σm)

dθ
= exp

{
−
(
σm

σ0

)m

M

}(
σm

σ0

)m dM

dθ

= [1− P(σm)]

(
σm

σ0

)m( RL2

S0L0

)
sinm θ

= B sinm θ

where B is a factor independent of angle. Therefore,
the fracture angle probability density is given by

g(θ ) = Asinm θ (7)

Here A is another factor that is independent of angle,
and it is obtained by requiring the integration ofg(θ )
over its range to be unity. Symmetry of the sine function
allows the range to be compressed from 0 toπ to 0 to
π/2.

3. Experimental procedure
The material used in these experiments was borosili-
cate glass. The glass was obtained initially as rod stock
of 6 mm diameter, approximately one meter in length.
Bending test specimens were 50 mm in length. These
were fabricated by scratching and breaking to length.
The central span of the four-point loading jig was
20 mm. Loading and support “knife edges” were steel
rods of 6.3 mm diameter.

After breaking to length, all fifty specimens were
heat-treated to reduce residual stresses. Specimens
were held at 500◦C for 30 minutes. No attempt was
made to assess possible devitrification during anneal-
ing. Tests were carried out in a universal testing ma-
chine, MTS model 810, using a ram speed of 4µm/s.

The theoretical framework in which these results are
being interpreted here assumes no variation in bending
moment along the rod axis. This condition only pre-
vails in the center span of the specimen, and so those
few specimens that fractured in an end span were dis-
regarded for the present purposes.

After completion of each bending test, the fracture
surface of the sample was inspected using an optical
microscope. This enabled us to determine the location
of the initiation flaw and measure its angular position,
θ , with respect to the neutral axis of bending. The ex-
perimental uncertainty of each angular measurement
was plus or minus two degrees.

4. Results
Measurements of angle of fracture initiation are shown
as a histogram in Fig. 3 (for larger than 90 degrees the
supplement of the angle was used). The mean value
of the angle obtained from experiments is 71 degrees
(with a standard deviation of 14 degrees).
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Figure 3 Histogram of the frequency versus fracture angle. Broken line
represents the histogram calculated from the probability density function
g(θ )= 2.02 sin5.9 θ .

Figure 4 Weibull diagram for tensile and bending tests of 6-mm-
diameter borosilicate glass.

Fig. 4 shows the Weibull diagram for the glass spec-
imens. The number of broken specimens is forty-four.
Cumulative probability was estimated by the rank func-
tion P(i )= (i − 0.5)/nt, wherei is the ordered obser-
vation andnt the total number of data points (for each
individual setnt= 22). The same rank function was
used to plot the fracture stress in the Weibull diagram
and this function is a good estimator of the cumula-
tive probability [7]. Least squares fitting of the data
resulted in a value of the Weibull parameterm= 5.9
with a standard deviation of 0.2. At fifty percent proba-
bility of fracture the stress was 110 MPa with a standard
deviation of 9 MPa.

5. Discussion
Comparison of experimental data with predictions of
fracture angle probability density (Equation 7), which
is based in Weibull statistics, can be done in two ways.

A theoretical histogram can be obtained from the
density function. Each level is calculated by integration
of this density function between lower and upper limits
of the level. This histogram is represented in Fig. 3
as a broken line and shows good agreement with the
experimental histogram already mentioned (full line).

Experimental mean fracture angle and standard de-
viation already indicated can be compared with the the-
oretical mean calculated from the assumed density dis-
tribution function. This mean is given by:

[θ ] =
∫ π/2

0
θg(θ ) dθ

/∫ π/2

0
g(θ ) dθ = 72 degrees

with a standard deviation of

SD=
{∫ π/2

0
(θ − [θ ])2g(θ ) dθ

/∫ π/2

0
g(θ ) dθ

}1/2

= 13 degrees

These values compare very well with the experimental
values (71 and 14 degrees).

On the other hand, comparison of theoretical calcu-
lations with other experimental results on tensile and
bending strengths shows some discrepancies. Difficul-
ties may arise when comparing results from the differ-
ent tests. For instance, proof testing experiments gener-
ally are used as a guarantee of mechanical strength for
optical fibers. Proof testing may be conducted either by
tensile [8] or by bending [9] tests, and there are definite
problems in trying to establish an appropriate correla-
tion between the two. The main difference between the
two is the stress distributions on their respective cross
sections. In the tensile test, the stress is constant over
the specimen cross section, whereas in the bending test,
it varies from the maximum tensile stress at the lower-
most fibers, decreasing along the surface (and through
the bulk) to zero at the neutral axis and to compression
above the neutral axis.

Based upon circularly cylindrical geometry and
Weibull statistics, Medrano and Gillis [10] and Kittl
and Diaz [11] have calculated the theoretical ratio of
tensile stressσt to maximum bending stressσm that re-
sults in equal fracture probabilities in both tests. Call
this geometry dependent ratioT . Previous experimen-
tal measurements on glass were made [12] to assess
these theoretical calculations. Quite poor agreement
was found between theory and experiments, and it was
concluded that fracture in the materials tested was not
satisfactorily described by Weibull statistics.

Experimental Weibull parameters and stress values
for 50 percent fracture probability are given in Table I
for the three sets of tests: prior tensile and bending tests
and the current bending tests. For the previous results
the experimental ratioT was 0.46 while the theoretical
value was significantly higher: 0.64. If the maximum
bending stress for 50 percent probability of fracture
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TABLE I Characteristic material parameters obtained from tensile
and bending tests of rods of borosilicate glass

Stress at 50 Percent Probability
Weibull Parameter,m of Fracture (MPa)

6.2 (0.2) 38 (6) tensile (previous)
6.5 (0.3) 82 (12) bending (previous)
5.9 (0.2) 110 (9) bending (present)

Numbers in Parentheses denote standard deviations obtained by least-
squares fitting of data sets.

of the present experiments is taken, together with the
tensile stress of previous experiments, theT value is
0.38, even lower than previous value.

One possible explanation for the increasing discrep-
ancy is that although the materials used in the previous
and present experiments have the same heat treatment,
the samples were taken from two different material
batches. Therefore, they could have different intrinsic
strengths.

Another possible explanation is based upon the well
known but not satisfactorily quantified phenomenon
that for ceramic materials an increase of the rate of
stressing produces an increase in fracture stress. This
stress rate dependence is called fatigue. Unfortunately,
in our previous experiments, ram speeds were not
recorded, because the influence of stress rate was not
considered. An explanation of the disagreement of ex-
perimental and theoretical values of the parameterT
could be attributed to fatigue, but to reach any conclu-
sion, additional experiments should be done.

Any stress rate effect is additionally complicated by
a fundamental difference between tensile and bending
tests. In tensile tests the stress is uniform and, therefore,
the stress rate is also uniform throughout the specimen.
However, in the bending test the stress is variable, as
indicated in Equation 3, and then the stress rate is also
variable. Thus, equal ram speeds in bending tests do
not assure equal stress rates at the fracture initiation
location for all samples.

If differences in stress-rate are not large, correspond-
ing differences in fracture stress are practically neg-
ligible. In bending the ratio between minimum and
maximum stress-rates is approximately two (based
on a minimum observed fracture angle of approxi-
mately 30 degrees). The ratio between two fracture
stresses is related to the stress-rate ratio (dσ/dt) by [13]
σ1/σ2={dσ1/dt)/(dσ2/dt)}{1/(n+ 1)}, wheren is the fa-
tigue parameter. For the borosilicate glass tested at 50%
RH (relative humidity)n is about 31 [14] and, thus, the
maximum fracture stress is only about 2% larger than
the minimum fracture stress when the rate ratio is two.

A way to avoid the influence of fatigue is to use ap-
proximately the same stress-rate for tensile and bending
tests. A rough approach would be to take equal tensile
and maximum bending stress-rates. A better approach
is to use instead of the maximum stress-rate, the mean
stress-rate in bending [dσ/dt ] given by[

dσ

dt

]
=
(

dσm

dt

)
[sinθ ] (8)

where dσm/dt is the maximum bending stress-rate and
[sinθ ] is the mean of sinθ is calculated by using the

density of probabilityg(θ ) as

[sinθ ] =
∫ π

0
sinθg(θ ) dθ

/∫ π

0
g(θ ) dθ

=
{
0

(
m

2
+ 1

)}2
/{

0

(
m

2
+ 3

2

)
· 0
(

m

2
+ 1

2

)}
(9)

wherem is the Weibull exponent and0 is the gamma
function. In our experiment (m= 5.9), the mean stress-
rate is 0.93 of the maximum stress-rate.

Of course the tensile tests must be performed first and
analyzed so that the value ofm is available to determine
the corresponding bending test stress rate.

6. Conclusions
1. Experimental measurements of angular positions of
fracture initiation show excellent agreement with cal-
culated distributions based upon Weibull statistics.

2. Disagreement of experimental and theoretical val-
ues for the ratio of tensile stress to maximum bending
stress that results in equal fracture probabilities in both
tests could be related to fatigue; but additional experi-
ments must be done to confirm this assumption.
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12. O. E. A L A R C Ó N, R. E. M E D R A N O andP. P. G I L L I S ,

Metall. & Mater. Trans. A25A (1994) 961.
13. M . A . R. L U C A S, R. E. M E D R A N O andP. P. G I L L I S ,

Metall. Trans. A22A (1991) 867.
14. S. W. F R E I M A N, T. L . B A K E R andJ. B. W A C H T M A N

J R., in “Strength of Inorganic Glass,” edited by C. R. Kurkjian
(Plenun Press, New York, NY, 1985) p. 597.

Received 16 June 1999
and accepted 15 March 2000

4652


